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Calculating the dynamics of High Explosive Violent 
Response (HEVR) after ignition 

 
John E. Reaugh 

1. Background 
 We are developing models to describe the circumstances when molecular and 
composite explosives undergo a rapid release of energy without detonating, and to 
describe the evolution of the energy release. The models also apply to the behavior of 
rocket propellants subject to mechanical insult, whether for accidents (Hazards) or the 
suite of standardized tests used to assess whether the system can be designated an 
Insensitive Munition (IM). In the applications described here, we are studying a UK-
developed HMX (1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane) explosive, which is 91% 
by weight HMX and 9% binder-plasticizer. 

Most explosives and propellants, when subjected to a mechanical insult such as a 
drop or impact that is well below the threshold for detonation, have been observed to 
react. In some circumstances the reaction can be violent. This behavior is known as High 
Explosive Violent Response (HEVR). Fundamental to our model is the observation that 
the mechanical insult produces damage in a volume of the explosive near the trajectory of 
the impactor. The damage is manifest as surface area through the creation of cracks and 
fragments, and also as porosity through the separation of crack faces and isolation of the 
fragments. Open porosity permits a flame to spread easily and so ignite the newly formed 
surface area. The additional surface area leads to a direct increase in the mass-burning 
rate. As the kinetic energy and power of the insult increases, the degree of damage and 
the volume of damage both increase. Upon a localized ignition, the flame spreads to 
envelop the damaged volume, and the pressure rises at an accelerated rate until neither 
mechanical strength nor inertial confinement can successfully contain the pressure. The 
confining structure begins to expand. This reduces the pressure and may even extinguish 
the flame. Both the mass of explosive involved and the rate at which the gas is produced 
contribute to each of several different measures of violence. Such measures include 
damage to the confinement, the velocity and fragment size distributions from what was 
the confinement, and air blast. 

In the first phase (advisory) model described in [1], the surface to volume ratio 
and the ignition parameter are calibrated by comparison with experiments using the UK 
explosive. In order to achieve the second phase (interactive) model, and so calculate the 
pressure developed and the velocity imparted to the confinement, we need to calculate the 
spread of the ignition front, the subsequent burn behavior behind that front, and the 
response of unburned and partially burned explosive to pressurization. A preliminary 
model to do such calculations is described here. 

2. Computational test vehicle 
 We sought a simple computational test vehicle that could be used for examining 
the sensitivity of the pressure development in the damaged explosive to a variety of 
parameters. For our purpose, it was convenient to use a sphere of explosive surrounded 
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by a spherical shell. This geometry is well behaved, in that with modest rates of pressure 
increase, the shell expands uniformly rather than localizing the strain in what would 
become the region of first fracture. We note that when the ignition point is moved away 
from the center of the sphere, the strain does localize in the wall at the point farthest from 
the ignition. 
 
2.1 Baseline geometry 
 The baseline test geometry is a 20 mm-diameter spherical volume of explosive, 
surrounded by a steel shell with 1 mm wall thickness. For the baseline calculation, the 
explosive is at 95% of its nominal density. It is convenient to account for the initial gas-
filled porosity by using HE product at 293K and 0.1 MPa. The initial extent of reaction 
(mass fraction of product) is 3.4x10-5. We took this to be representative of the porosity 
introduced by mechanical damage.  

The sphere contains 7.3 g of the UK explosive at the reduced density, surrounded 
by an 11 g steel shell. We have taken the baseline steel strength to be 500 MPa. We note 
that the quasi-static burst pressure, Pb, which is the pressure that produces unlimited 
strain in the steel, is given in the limit of a thin-walled shell by 
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where t is the wall thickness, D is the sphere diameter, and Y is the tensile strength of the 
shell material. For the baseline properties, the burst pressure is 100 MPa. The baseline 
ignition point is the center of the sphere, and it is ignited at time zero.  
 
2.2 Practical test geometry 
 Although convenient for calculation, the geometry described may not be practical 
for testing. Even if constructed as two flanged hemispheres, assembling them filled with 
loose powdered explosive and placing a central igniter would be a delicate affair. Perhaps 
a more practical geometry would be a hollow cylinder with the base plates on top and 
bottom sturdy enough that the release of pressure was due to the expansion of the 
cylindrical surface. We developed one such test geometry with a nominal burst pressure 
of up to 200 MPa, depending on the wall thickness. The application was the Scaled 
Thermal Explosion eXperiment series [2]. The design has been constructed and tested in 
both 25 and 50 mm diameters. Alternatively, a hemisphere with a base plate could be 
constructed using techniques developed for igniter and Electric Bridge Wire (EBW) 
detonator experiments. That geometry is also suggestive that simulations of the ignition 
train may be additional applications for the models being developed here. In addition, 
such experiments might be an additional source of data for testing models and calibrating 
model parameters. 
 
2.3 Relationship between quasi-static burst pressure and peak pressure 
 The dynamic HEVR pressure history, although much slower than the energy 
release rate of a detonation, can be more rapid than the dynamic response time of the 
containment vessel. For our baseline geometry, the fundamental (elastic) period of the 
hollow sphere is about 8 µs, and for geometrically scaled spheres is proportional to the 
diameter. In the limit of rapid pressure rise, the expansion of the confinement is limited 
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by inertia, not strength of materials. As a result, the peak pressure experienced in the 
HEVR is not simply related to the quasi-static burst pressure.  
 In some cases, the dynamics of the interaction can be quite interesting and 
complicated. In one of our calculations, the expansion of the steel confinement dropped 
the pressure so much that the shell, although expanded and thinned, was able to slow 
down and stop. This slow down, in turn, put a compression into the burning explosive, 
which helped the pressure in the center rise again, so accelerated the mass burning rate 
and re-expanded the shell. 

3. Calculation of the spread of ignition 
 Once ignition occurs, hot gas from the ignition site expands through the 
surrounding porous, damaged, but unlit explosive. The speed of propagation cannot 
exceed the sound speed of the hot gas, which is about 1 km/s. The criterion for ignition 
will require the hot gas to be in contact with the solid for a long enough time that the 
surface can be raised to the ignition temperature. Since the product species in the gas can 
react with the solid [3] the actual ignition temperature may be less than the ignition 
temperature when heated by a hot but inert gas. For our initial calculations, we assume 
that both the tortuosity of the path and the delay time can be represented by an effective 
slow-down of the propagation velocity. Our baseline calculations use the value 300 m/s 
for the velocity of ignition spread. 
 Although the velocity of ignition spread is subsonic, we have assumed for 
simplicity that the time of ignition can be calculated from the undeformed geometry. 
There is, in fact, little distortion of the baseline computational test vehicle. Figure 1 
shows the geometry of the baseline test vehicle at time zero, and at 34 µs, which is the 
time required for the ignition front to reach the inner wall of the steel. The calculations 
here were all performed with CORVUS, an AWE two-dimensional Lagrange code [4]. 

4. Calculation of pressure 
 In most studies of the Deflagration to Detonation Transition, DDT, the stress in 
the mixture is partitioned into the gas pressure, the solid pressure, and the stress in the 
solid particles due to stress bridging in the skeleton [5, 6]. In the rock and soil mechanics 
literature, the matrix stress in the solid skeleton that is greater than the stress in the 
intervening fluid (water) is called the effective pressure. The shear resistance of the 
skeleton depends on that parameter. If the pressure in the fluid equals or exceeds the 
pressure in the skeleton, the particles lose contact, and the shear resistance is nil. In our 
initial studies, we have ignored the shear strength of the matrix. The overall resistance to 
consolidation offered by the matrix is a modest multiplier of the shear strength of the full 
density material until the last stages of densification, when the multiplier can reach 10 or 
more. 
 Another potentially important feature of the resistance of the matrix is its 
irreversibility. The unloading from a consolidated state has a relatively steep modulus, 
approaching that of the solid. In the earlier studies of DDT, the emphasis was on 
proceeding to detonation, not failure to detonate. As a result, the loading was 
substantially monotonic, and the omission of steep unloading curves in some of the 
studies, with the accompanying omission of unloading waves that overtake the loading 
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waves, was probably unimportant. In our work on HEVR, the unloading may be 
significant. As a result, we have chosen a method that provides such asymmetry. 

Temperature equilibrium is not achieved. The flame front, which is the gas and 
solid interface, is thin relative to the fragment dimension. As a result, most of the solid is 
at the initial temperature, not the temperature of the hot gas, which is about 3000K. To 
determine the energy partition between gas and solid, we use the method described in [7]. 
In that method, the solid is on its adiabat and the gas gets the energy that is left over. 
 
4.1 Equation of state of the solid 
 We use the JWL form [8] for the solid equation of state, and a constant specific 
heat of the solid for calculating what is at best an advisory temperature. For the purpose 
of hydrocode simulations, the energy-dependent form may be preferred. The pressure, P, 
is given in terms of the relative volume, V, which is defined as ρ0/ρ : 
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where ρ is the density, ρ0 the reference density, e the specific energy density, and A, B, R, 
S, and ω are parameters. Conventionally, the parameter B is negative when describing 
solids. The solid temperature can be calculated by 

! 

T = e "
A

R#0
exp "RV( ) "

B

S#0
exp "SV( )

$ 

% 
& 

' 

( 
) /cv  

where cv is the specific heat of the solid. The B coefficient depends on the initial state of 
the solid, which is convenient to specify by the initial pressure and temperature, P0, T0 at 
the reference density (V = 1). In that case the B coefficient is given by 
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and the initial energy density is given by  
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4.2 Equation of state of the gas 
 We developed an equation of state table for the gas products [1] using Cheetah 
[9,10]. The table is rectangular, with 41 density columns and 11 temperature rows. The 
density entries are spaced logarithmically, except near the density of 1.0 g/cc and higher, 
where they are linearly spaced. The density range of the table is 10-3 to 3 g/cc, and the 
temperature range is 250 to 10,000K. At temperatures of 10,000K and above, ionization 
effects in the gas begin to play a role. The version of Cheetah we have used (Cheetah 4) 
does not include such effects. It is better, however, to have an approximate value, rather 
than use extrapolation. Compressions in the un-ignited material can drive the gas 
temperature up substantially. In our computations reported here, we found that the gas 
would occasionally undergo excursions to density as low as 10-4 and temperatures as high 
as 20,000K. We would recommend extending the table to 10-5 g/cc and 50,000K for 
future versions of the model. Interpolation in the table is linear in the logarithm of 
density, linear in temperature and energy density, and logarithmic in pressure. The 
method of interpolation for an entry in density and energy density follows. The density 
list is searched to find the adjacent entries lr1 and lr2 where
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logarithm of the density. The linear interpolation parameter, p, is given by 
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The left temperature-like interpolation parameter, q1 is given by 
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The parameter q2 is found similarly along the adjacent higher density column. The 
temperature is interpolated on the left column, T1 by 
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and similarly on the right. The log of pressure, lp, is similarly interpolated on the left and 
right. Finally, the temperature is interpolated by 
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and the log pressure interpolated similarly. 
 
4.3 Model to calculate the stress in the matrix 
 The solid skeleton is an assembly of particles touching on some of their surfaces. 
Compression of that skeleton is accompanied by a rearrangement of the particles that 
produces an irreversible compaction, and an increasing resistance to further 
consolidation. An unloading-reloading path that has a higher modulus than the 
consolidation limit provides irreversibility. We developed a model [11] that describes this 
irreversible consolidation and includes explicitly the reference state porosity. If the 
burning process reduces the mass from the available surfaces of the particles, and they do 
not rearrange themselves, then the porosity (the fraction of the total volume not occupied 
by solid material) increases with the extent of reaction, λ.  

 

! 

" = #g = $
vg

v
0

=1%#s =1%
vs(1% $)

v
0

. 

Here 

! 

"  is the porosity, φs, g the volume fractions of solid and gas, vs, g are the specific 
volumes of the solid and gas at the initial pressure, and v0 is the initial specific volume. 
The relative volume, Vx, of that configuration is given by 
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where ρs0 is the initial density of the solid. At the relative volume Vx, the original 
configuration is unstressed. 
 The resistance to consolidation is given by a hysteretic volume dependent term 
and an energy dependent term, 
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The resistance to consolidation, Pc is given by 
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where K is the bulk modulus of the solid, and 
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where the parameter β << 1 increases with the strength of the solid material [11], and 
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The unload-reload modulus,
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and is limited to be no greater than K and no less than a specified fraction (typically10%) 
of K. The hysteretic volume consolidation is augmented by a modified Gruneisen 
parameter where 
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where Γ is the Gruneisen parameter of the solid. The parameter values used in the 
calculations are given in Table 1. 
 We have illustrated the resistance curve to consolidation from an initial porosity 
of 16.7% in Figure 2, including intermediate load-unload curves. The initial relative 
volume is 1.2 at that porosity. At some porosity, on the order of 40%, (relative volume 
1.65) the matrix can no longer support any stress because the particles no longer touch, 
and the matrix pressure is considered zero. Since, in our view, the damaged material is 
broken, we do not permit the matrix stress to be tensile. A history variable is set when the 
matrix over expands, so that recompression is not resisted until the previous density at 
zero pressure is reachieved. This is consistent with the view that the expanding assembly 
does not rearrange itself to maintain contact between the particles, but rather separates as 
isolated fragments. It should be noted that the pressure, calculated in this model [11] is 
that appropriate for the macroscopic stress acting on a plane. This macroscopic matrix 
pressure, Pmm, is given by 
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where Pm is the matrix stress.  
 
4.4 Calculation of the mixture stress 
 In hydrocode simulations, energy conservation for some specific equation of state 
forms can be solved directly [12]. With more general equation of state forms, the energy 
equation can be solved with 2-step energy iteration. This method is sufficiently accurate 
[13] provided that the volume change in any computational cycle is limited to about 4%. 
In compression, that limit corresponds to the limit imposed by the stability criterion for 
artificial viscosity. The iteration for a given element with a single material  
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where Q is the artificial viscosity used in hydrocodes to spread a shock discontinuity over 
several computational elements, and to increase the entropy appropriately across a shock 
front. The subscripts o, n, and h refer to the time centering of old, new, and halfway 
between. The method of partitioning the energy between the gas and solid species 
described by [7] is to force the solid to be on its adiabat, and to allot the remaining energy 
to the gas. The process comprises two steps. The first step is to equilibrate pressure with 
the old composition, tracked by the extent of reaction, λ. The parameter λ is the mass 
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fraction of gas in a given computational element. Conservation of energy for the mixture 
requires that at each step, 
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de = " P +Q( )dv  
with the appropriate centering. The pressure of the mixture is given by 
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P = "sPs + 1#"s( )Pg . 
Pressure equilibrium requires that 
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Ps = Pg + Pm  
where the subscripts s, g, and m refer to solid, gas, and matrix. Substituting the 
expression for the solid pressure in the equation for the change of energy in the mixture 
gives 
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Expanding dv into the solid and gas parts results in 
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We then identify the energy change in the gas as 
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Since the matrix specific volume is given by 
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we recognize that the energy change in the matrix is given by 
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The energy change in the solid is given by 
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so that the overall energy balance is given by 
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At small extent of reaction, the gas specific volume change can be large, although the 
other volume changes are small. As result, it may be more accurate to solve for the 
change in the gas specific energy by 
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which is in keeping with the method of isochoric burn. 
 The first step in the calculation is to calculate the pressure and energy density at 
half time. We first solve  
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We then select a trial value for the gas specific volume, vga 
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where the iteration requires the figure of merit Fa to be adequately close to zero. The 
starting guess for the gas specific volume is to assume that the solid stays at its previous 
value, and the gas takes up all of the volume change. For our purposes, convergence is 
defined as achieving  the absolute value of Fa less than 10-5Ps, or less than 10 Pa. At the 
end of the iteration, the half-time values are given by 
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 A second iteration for the pressure, Pt, uses the energy density et based on the half 
time pressures. For this iteration the starting gas volume, vgb, is the previous equilibrium 
value. 
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A trial value for vgb is selected for the next iteration 
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After successful iteration, the values are saved as the trial state. The final step is to update 
the extent of reaction at constant volume. The total energy remains the same. The change 
in the extent of reaction for each computational element is given by 
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where p0 = 1 GPa, vf = 1 m/s, and n = 1 [1]. The parameter d is the diameter of a sphere 
with the local surface-to-volume ratio. The iteration for pressure proceeds as follows with 
the new extent of reaction: 
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A value of the gas specific volume vgc is selected, and the iteration for the new extent of 
reaction proceeds. 
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For this last iteration, the starting solid specific volume is assumed not to change from the 
previously converged value of vst. After successful completion of the iteration, the new 
values are updated. Although in this last step, the gas and solid are calculated as 
increments from the trial state, the matrix is recalculated from the old state. The reason is 
that the matrix would always be unloading from the trial state to the new extent of 
reaction. The extent of reaction always increases, so the value vmn is always greater than 
vmt. This would always leave the matrix in an unload-reload state below the crush curve. 
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where the subscript x stands for s and  g. In our implementation, all three iterations are 
performed with a simple Newton solver,  
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vg, j+1 = vg, j " Fj vg, j " vg, j"1( ) / Fj " Fj"1( ). 
Here j is used as an iteration counter. At all steps in the iteration, the gas specific volume 
is constrained to be more than a minimum value that corresponds to the maximum 
density in the table. In addition, the solid specific volume is constrained to be less than 
the specific volume at which the zero-temperature pressure-volume isotherm has a 
minimum. At extreme values of the extent of reaction, the specific volumes in the 
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iteration can exceed these values. If a limit is exceeded, the value chosen is midway 
between the most recent value and the limit. 
 In our implementation, we found that in certain circumstances the unburned 
explosive was subjected to a strong rarefaction, which decoupled the matrix, followed by 
a recompression that heats the gas strongly. In some cases, the iteration to achieve 
pressure equilibrium did not converge. In those circumstances, reducing the time step 
permitted convergence. In other circumstances, the pressure was observed to oscillate 
significantly. This is a common occurrence for porous materials. The standard artificial 
viscosity forms do not produce enough entropy to increase the internal energy across a 
shock front in a porous solid. The additional energy is manifest by ringing behind the 
shock front, as an additional kinetic energy. Increasing the artificial viscosity coefficients 
suppresses that ringing, and in some cases can improve convergence. 
 
5. Results for computational test vehicle 
 
5.1 Results for the baseline geometry 
 For the baseline case, the pressure histories in cells at x=0 and original y-
coordinates of 4.6, 6, 7.6, and 9 mm show a decreasing value of peak pressure in Figure 
3. Also shown there is the volume-averaged pressure, which we use in the following 
figures as representative of the pressure in the test vehicle. The peak of the volume-
averaged pressure is about twice the static burst pressure. At smaller radii than those 
shown, the spherical convergence from a reflection off the steel interface increases the 
peak pressure. With the mesh shown, the pressure at the ignition point increases to over 2 
GPa at a time of 40 µs. This peak pressure spike, about 10 times the nominal pressure 
maximum, is mesh-size dependent,  and also dependent on the high symmetry of the 
baseline test  geometry. For the baseline case about 0.4 g of the initial 7.3 g is burned 
before the case expands and would ultimately break. 
 The matrix stress is relatively unimportant for the baseline computational test 
vehicle. The matrix is somewhat compressed away from the ignition zone, but once the 
ignition front passes the matrix begins to burn, loses contact, and the matrix stress drops 
to zero. In deflagration to detonation transition (DDT) testing and simulations with 
similar models, the strong confinement and planar ignition sends a strong compression 
into the unburned material. In our geometry, the compression from the ignition point is 
subject to spherical divergence. 
 
5.2 Effect of  various parameters 
 The velocity of the ignition front affects the time of peak pressure, but not its 
value. See Figure 4 where the ignition front velocity is dropped from 300 to 100 m/s. The 
mass burned (Figure 5) is essentially unchanged. 
 The location of the ignition point at y=0, x=0, -5, -8, and -10 mm, has little effect 
on the volume averaged pressure (Figure 6) and similarly little effect on the mass burned 
(Figure 7). As the ignition point moves farther from the center there is a tendency to 
concentrate the strain in the shell at the point y=0, x=10 mm, causing early failure of the 
containment. We increased the porosity from 5 to 35%. The latter value is typical for 
assemblies that are made by pouring loose powder and vibrating the container (tap 
density). The result is a delay in the appearance of the peak pressure (Figure 8) and a 
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modified value, so that the maximum pressure is associated with an intermediate 
porosity. The total mass burned is essentially unchanged. See Figure 9. In some sense the 
shell is responding to the same pressure, which is caused by burning the same mass of 
powder. 
 The strength of the confinement has a significant effect on the peak pressure 
(Figure 10) and the mass burned (Figure 11). Doubling the strength doubles the peak 
pressure and the mass burned. We notice an interesting feature of the dynamics for the 
strong vessel. After the peak pressure, the container expands, reducing the pressure. 
However, the pressure in the interior drops more quickly than the thinning wall reduces 
the burst pressure. By about 100 µs, the shell stops expanding. This causes compression 
in the interior of the vessel, and spherical convergence causes a noticeable increase in the 
mass-burning rate, which raises the pressure. By 250 µs the sphere has expanded again, 
and begins to reduce the pressure in the HE. If we double the surface area of the 
explosive, the peak pressure does not change much (Figure 12) but it is sustained longer, 
so that the mass burned is nearly double. We note that a geometrically scaled vessel with 
twice the diameter but the same specific surface area (equivalent sphere diameter) has a 
geometrically scaled result. The pressure, shell velocity, and extent of reaction are 
unchanged, although the time scale is doubled. The starting mass and the mass burned are 
eight times that for the smaller scale result. We ignored any rate-dependent properties. If 
strain-rate effects are present, the larger vessel will be slightly weaker because the strain-
rate is halved. For the extreme case of 10 times the specific surface area, the peak 
pressure doubles to 0.4 GPa (Figure 12), and the mass burned is nearly 3 g by 50 µs. The 
alternative geometric scaling with the original specific surface area but 10 times the 
diameter (7.3 kg) burns 3 kg in 500 µs. The lesson here for HEVR is that with the same 
specific surface area, large volumes are more dangerous than small volumes. Not only is 
a larger mass of explosive present, but also a larger fraction of the explosive is burned in 
a relatively shorter time. 
 
 
5.3 Deflagration to Detonation Transition (DDT) 
 The phenomenon of DDT is a possible outcome of HEVR, and our models need 
to identify the circumstances when it occurs, and when it does not. If the ignition front 
propagates more slowly than a compression shock in the unburned but damaged 
explosive, then a detonation model such as CREST [14] will be valuable. That model 
accounts for the effect of porosity on the run to detonation, and can distinguish the effect 
on initiation of pressure from a shock and the same pressure from an adiabatic 
compression. We note that data on the lower bound of shock pressure for initiation, such 
as is used in the James criterion for detonation [15] as a function of porosity is lacking for 
most explosives. We have performed a one-dimensional calculation with the initiation 
near the end of an unyielding tube filled with 500 µm particles at 5% porosity. Pressure 
histories are recorded at 50 mm intervals down the length of the tube (Figure 14). They 
show a strengthening and accelerating shock propagating down the tube. Experiments 
with the UK explosive [16] show that 2 GPa shocks result in a run to detonation length of 
35 mm. Although data are lacking for damaged, porous explosive, and for shock 
pressures much less than 2 GPa, it seems clear that a detonation would occur at a location 
about 300 mm down the tube. Calculations with the same geometry using twice the 
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specific surface area or half-diameter (250 µm) particles show similar results, except that 
the detonation point is located much closer to the ignition source. 
 In HEVR events, the ignition is started in a small volume of material that is the 
most strongly deformed. As a result, the compression wave that emanates from this 
volume decays in amplitude with spherical divergence. In standard DDT tests, the porous 
explosive is contained in a strong metal pipe, and the initiation is planar. The lack of 
substantial loss in the pressure wave means that as the pressure builds in the initiation 
volume, compression waves can catch up to the shock front and strengthen it. This 
geometry permits a shock initiation in material that has not yet been ignited at some 
distance down the tube, away from the initiation site. 
 In HEVR events, reflections from nearby metallic surfaces are unlikely to show 
constructive interference and amplification. Our baseline geometry, however, has 
spherical symmetry so the ignition point is strongly recompressed. The recompression is 
probably not a shock, and it occurs in material that is burning. The finite compressibility 
of the hot gas inhibits consolidation of the matrix that may occur when burning is not 
achieved. Hot spots associated with the heterogeneous consolidation of a porous 
explosive may not occur. Mesoscale simulations coupled with experiments would give 
insight into the possible initiation mechanisms at work in the strong compression of 
burning explosive. 
  

6. Summary 
 We have developed a burn model for HEVR that incorporates porosity, specific 
surface area, and propagation of an ignition. It calculates the resulting build-up of 
pressure. In DDT geometry, where the ignition volume is a planar disk, and the wave 
propagation is essentially one-dimensional planar, the model exhibits a build-up of 
pressure in the ignited volume, and the propagation of a strengthening shock in the 
unburned explosive. That shock wave can lead to a detonation that starts part way down 
the tube, referred to as a retonation.  

The model described here is the first, required step in developing a 
comprehensive, interactive model, which uses the damaged surface area, porosity, and 
ignition time and location described previously [1]. The comprehensive model, then 
exhibits element-by-element varying properties that affect flame propagation and 
pressure build-up. The basis for that model has been described here. 
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8. Table 
 
Table 1. Parameter values used in the simulations 
Use Parameter Value 
Solid equation of state A 69.69 
 B Calculated 
 R 7.8 
 S 3.9 
 w 0.01 
 ρ0 1.842 g/cc 
 cvs 1.086 J/g 
Matrix equation of state K 18 GPa 
 Γ 0.5 
 β 0.001 
Burn rate d 0.5 mm 
 p0 1 GPa 
 vf 1 m/s 
 n 1 
Ignition velocity vig 300 m/s 
Vessel diameter D 20 mm 
Shell thickness t 1 mm 
Shell yield strength Y 0.5 GPa 
   
 
 

9. Figures 
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Figure 1. Axisymmetric mesh of baseline geometry at time zero (left) and at 34 µs.  The 
mesh has expanded slightly at this time.  The baseline position of the igniter  is at the 
center of the sphere, (x, y) = (0, 0). There is a slideline between the explosive and the 
steel. 
 
 
 

 
Figure 2. Compaction pressure of matrix, Mbar, as a function of relative volume. The 
significantly steeper load-unload traces are also shown. 
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Figure 3. Pressure, Mbar, in the baseline geometry at locations (from maximum to 
minimum pressure at 40 µs) x=0, y=4.6, 6, 7.6, and 9 mm. The volume-average of 
pressure is also shown as a function of time (smooth black line). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Volume averaged pressure, Mbar, as a function of time, µs for the baseline 
ignition velocity of 300 m/s (black) and for 100 m/s ( delayed peak, red). 
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Figure 5. Mass burned, g, as a function of time, µs for the baseline ignition velocity of 
300 m/s (black) and 100 m/s (delayed, red)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Volume averaged pressure, Mbar, as a function of time, µs, for the baseline 
ignition point x=0 (black) and (from earliest to latest time at 0.001) x= -0.5 (red), -0.8 
(green), and -1.0 (blue). 
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Figure 7. Mass burned, g, as a function of time, µs for the baseline ignition point x=0, 
and from earliest to latest time at 0.2, x=-0.5 (red), -0.8 (green), and -1.0 (blue). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. Volume averaged pressure, Mbar, as a function of time, µs, for the baseline 
porosity, 0.05 (black) and for increasing time of the peak values, 0.09 (red), 0.17 (green), 
and 0.35 (blue). 
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Figure 9. Mass burned, g, as a function of time, µs, for the baseline porosity 0.05 (black) 
and, at increasing times, for 0.09 (red), 0.17 (green), and 0.35 (blue). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10. Volume averaged pressure, Mbar, as a function of time, µs, for the baseline 
steel strength 0.5 GPa (black) and 1.0 GPa (red, peak value 0.004). 
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Figure 11. Mass burned, g, as a function of time, µs, for the baseline steel strength 0.5 
GPa (black) and for 1.0 GPa (red, peak value 1). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12. Volume averaged pressure, Mbar, as a function of time, µs, for the baseline 
equivalent sphere diameter 0.5 mm (black) and increasing in peak values,  0.25 mm (red), 
and 0.05 mm (green). 
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Figure 13. Mass burned, g, as a function of time, µs, for the baseline equivalent spheres 
0.5 mm (black) and increasing in peak values, for 0.25 mm (red) and 0.05 mm (green). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 14. Pressure (Mbar) in DDT geometry as a function of time, µs. The histories are 
taken at 50 mm intervals down a one-dimensional planar tube starting at 50 mm from the 
planar ignition site. The shock is strengthening and accelerating down the tube. 


